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A simple copper promoting system CuI/NBS/DIPEA was first found to efficiently promote Glaser coupling
reaction under ambient temperature. The alkynes with sensitive groups such as acetal and ketal, TBDMS,
ester and amide could react smoothly to afford the functionalized 1,3-diynes under the CuI/NBS/DIPEA
promoting system in good yields. And the successful application of the CuI/NBS/DIPEA promoting system
in sugar and amino acid-building blocks indicated the potential of this method in the construction of
designed sugar and peptide biomolecules.

� 2009 Published by Elsevier Ltd.
1. Introduction

Recently, copper-mediated coupling reactions have raised great
attention in natural products and designed biomolecules synthe-
sis.1,2 One of the reasons is the key discovery that some organic
derivatives can speed up the traditional copper-mediated coupling
reaction and make these coupling reactions under mild conditions,
which allow the copper-mediated coupling reaction to be used
well in end game strategies on complex substrate.1 The Glaser-type
coupling is a classic reaction to prepare 1,3-diynes through homo-
coupling reaction from terminal alkynes. Glaser-type coupling
reactions have been applied in numerous research fields from total
synthesis of polyyne natural products to the straightforward
elaboration of highly conjugated new materials.3–16 The current
methods for the Glaser-type coupling mainly include traditional
copper-mediated Glaser-type coupling reactions,5–10 and
Palladium-assisted Glaser-type coupling reactions.11–16 The
traditional copper-mediated Glaser-type coupling reactions
usually involved excessive oxidants,6,7 rigid inorganic base and
high temperature,9 or expensive ionic liquid and supercritical
CO2.10a,b Palladium-assisted Glaser-type coupling reactions medi-
ated by Pd (0) or Pd (II), are arguably the most mild, efficient,
and selective methods for the synthesis of 1,3-diynes.11,12,15

However palladium reagents are expensive, and often required
air-sensitive and poisonous ligands. It is still a challenge to find
new copper-mediated promoting systems for the mild Glaser-type
coupling reaction with diverse structures.

Recently, we found that CuI/NBS/DIPEA could promote terminal
alkynes and azides to produce 5-I-1,4-substituted-1,2,3-triazoles
with good chemoselectivity under mild conditions.17 On the fur-
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ther investigation on this reaction procedure, we found that a
new compound was produced in the absence of azide under the
CuI/NBS/DIPEA promoting system (Scheme 1). This compound
was firstly considered as the halo alkyne from the reaction of halo
cation and alkyne copper in the reaction mixture, but 1H NMR and
MS showed that the new compound was the product of homocou-
pling reaction of terminal alkynes. In view of the good chemoselec-
tivity of the CuI/NBS/DIPEA promoting system shown in the
preparation of 5-I-1,4-substituted-1,2,3-triazoles, and the mild
reaction conditions of this reaction, we tried to explore the poten-
tial of CuI/NBS/DIPEA promoting system as a novel palladium-free
approach for Glaser-type coupling reaction of terminal alkynes.
Here, we report that CuI/NBS/DIPEA as a simple copper promoting
system is found to efficiently promote Glaser-type coupling reac-
tion under very mild conditions, and this promoting system can
be applied well in alkynes with sensitive functional groups and
in sugar and amino acid-building blocks.
2. Results and discussion

The homocoupling reaction of 1-ethynylcyclohexanol was taken
as an example for the optimization of the reaction conditions (as
shown in Table 1). Firstly, the amount of CuI, NBS, and DIPEA
was investigated and the best ratio of the substrates, CuI, NBS,
and DIPEA was 1:0.5:0.5:1(Table 1, entries 1–8). Different solvents
were then investigated for this reaction, and acetonitrile was the
best one with the highest yield in 4 h under ambient temperature,
compared with acetone, THF, and ethanol (Table 1, entries 11–13).
Finally, the reaction temperature was investigated. The ambient
temperature (25 �C) was the best choice for this promoting homo-
coupling reaction, as the lower temperature made the reaction
slow (Table 1, entry 14), and the high temperature reduced the
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Scheme 1. The reactions of alkyne with and without azide mediated by CuI/NBS/DIPEA.

Table 1
Screening reaction parameters for Glaser-type coupling reaction under CuI/NBS/DIPEA promoting system

OH

HO

OH
2

CuI/NBS/DIPEA

Entrya CuI (equiv) NBS (equiv) Base (equiv) Solventb Temp (�C) Time (h) Yield (%)c

1 0.1 0.5 1 CH3CN rt 4 21
2 0.3 0.5 1 CH3CN rt 4 69
3 0.5 0.5 1 CH3CN rt 4 90
4 0.5 0.1 1 CH3CN rt 4 21
5 0.5 0.3 1 CH3CN rt 4 61
6 0.5 0.5 0.5 CH3CN rt 4 58
7 0.5 0.5 0.3 CH3CN rt 4 25
8 0.5 0.5 0.1 CH3CN rt 4 N.Rd

9 0.5 0.5 1 CH3CN rt 2 65
10 0.5 0.5 1 CH3CN rt 10 89
11 0.5 0.5 1 THF rt 4 13
12 0.5 0.5 1 CH3CH2OH rt 4 54
13 0.5 0.5 1 CH3COCH3 rt 4 57
14 0.5 0.5 1 CH3CN 0 4 78
15 0.5 0.5 1 CH3CN 50 4 80

a The Glaser-type coupling reaction of 1-ethynylcyclohexanol (1 mmol) was taken as the example for screening reaction parameters.
b 3 mL Solvent was used for 1 mmol 1-ethynylcyclohexanol.
c Isolated yield.
d Alkyne was recovered.
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reaction yield. (Table 1, entry 15). After the above-mentioned opti-
mization, the best result for homocoupling of 1-ethynylcyclohexa-
nol with 90% isolated yield was afforded when the ratio of the
substrates, CuI, NBS, and DIPEA was 1:0.5:0.5:1 at ambient temper-
ature in CH3CN for 4 h (Table 1, entry 3).

Under the optimized condition, the application of this new syn-
thetic protocol was explored by using various alkynes as building
blocks to construct 1,3-diynes derivatives (Table 2). Both aliphatic
and aromatic terminal alkynes successfully underwent the
homocoupling to produce the corresponding 1,3-diynes in good
to excellent yields. Different types of protective groups, such as
acid-sensitive groups (THP, glycosyl bond), alkali-sensitive acetyl,
and TMDMS group could tolerate the reaction conditions. Some
widely used functional groups such as ester, ether, amide, and
hydroxyl were also found intact under the CuI/NBS/DIPEA promot-
ing system. Furthermore, the alkynes in the sugar and amino acid-
building blocks were tried under the CuI/NBS/DIPEA promoting
systems, and the corresponding 1,3-diynes were successfully
obtained in good yields with intact sugar and amino moieties,
which illustrated the potential of this method in the construction
of designed sugar and peptide biomolecules (Table 2, 2i–k).

As a novel copper promoting system, the two plausible mech-
anisms for the CuI/NBS/DIPEA-mediated Glaser coupling reaction
were proposed based on the reported mechanism for homocou-
pling reaction of terminal alkynes,19 and on our previous work.17

In the plausible route I (Scheme 2), Cu+–acetylide complex 4
could be produced from the Cu+–acetylide 3. Then an oxidative
coupling reaction might take place to give coupling product 2
with NBS as the oxidant. Based on the plausible route I, several
oxidants such as oxygen,6,7 DDQ20, and iodine16 were chosen for
the homocoupling reaction under ambient temperature instead
of NBS, but no desirable product was obtained and the alkynes
could be recovered completely. The nitrogen atmosphere was also
used for this CuI/NBS/DIPEA promoting system and the desired
1,3-diynes were obtained, which excluded the possibility of the
oxygen in air as the oxidant for this homocoupling reaction pro-
cedure. Thus the present CuI/NBS/DIPEA-mediated Glaser cou-
pling reaction might have a reaction mechanism different from
the reported oxidative homocoupling reaction of terminal al-
kynes. For the other plausible route II (Scheme 2), a mechanism
through 1-halo alkyne intermediate 5 could be proposed. The
Cu+–acetylide 3 could trap X+ from reaction mixture to give 1-
halo alkynes 5. Once the intermediate 5 was produced, it could
react immediately with Cu+–acetylide complex 3 from the reac-
tion mixture, halo anion left, and then the coupling product 2
could be obtained.21



Table 2
CuI/NBS/DIPEA-mediated Glaser-type coupling reactiona

R R
CuI/NBS/DIPEA

2R

1a-k 2a-k

Reactants Products18 Time (h) Isolated yield (%)

1a

2a

2 93

1b

2b

3 90

1c
OH

HO 2c

4 90

1d
CH3(CH2)5H3C (CH2)5 2d

2 95b

1e
OH(CH2)3HO (CH2)3 2e

3 94

1f
OAc(CH2)3AcO (CH2)3 2f

4 89

1g
OTBDMS(CH2)3TBDMSO (CH2)3 2g

4 89

1h

OO(CH2)3O O (CH2)3 2h

4 85

1i

O

OAc

OAc
O(CH2)3O

AcO

AcO
O (CH2)3

2i

4 78

1j

H
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O

CH3CH2O

O

N
H

O

OCH2CH3

O  2j

2 84

1k

O

O
CO2Me

N
H

H
CH2Ph

MeO2C

H
NH

PhH2C

2k

2 83

a All the reaction proceeded in CH3CN under ambient temperature, and the ratio of alkyne/CuI/NBS/DIPEA was 1:0.5:1:0.5.
b Determined by GC analysis.
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In conclusion, we have successfully developed an efficient and
mild method for preparation of 1,3-diynes under CuI/NBS/DIPEA
promoting system. The novel copper-mediated Glaser-type cou-
pling reaction could be completed under ambient temperature
without exclusion of air and moisture. A variety of terminal al-
kynes including aliphatic, aromatic, and acyl acetylenes success-
fully underwent the coupling reaction to produce corresponding
1,3-diynes in high to excellent yields. Alkynes with various protec-
tive groups, and even in sugar and amino acid-building blocks
could react smoothly to give the functionalized 1,3-diynes in good
yield within 4 h under CuI/NBS/DIEPA promoting system. The plau-
sible mechanisms of this novel copper-mediated coupling reaction
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Scheme 2. Two plausible mechanisms for the CuI/NBS/DIPEA-mediated Glaser coupling reaction.
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were discussed, and the further application of the CuI/NBS/DIPEA-
mediated Glaser coupling reaction in the construction of designed
sugars and peptide biomolecules is underway in our laboratory.
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